EFFICTENT DISCOVERY OF FUNCTIONAL BRAIN NET-
WORKS IN LARGE MULTT-SUBJIECT FMRI DATASETS

JEREMY R. MANNING*, KIMBERLY STACHENFELD, RAJTESH RANGANATH, KENNETH A, NORMAN, & Parzo M. BLET

SUPPORTED BY THE NSF/NIH COLLABORATIVE RESEARCH IN COMPUTATIONAL NEUROSCTENCE PROGRAM, GRANT NUMBER NSF ZIT7S-71009542
XMANNING3CPRINCETON.EOU

BACKGROUND TIGNIFICANCE REsuLrs: REAL Para

— TRADPITIONAL APPROACHES ESTIMATE FUNCTIONAL CONNECTIVITY USING FATRWISE — WE CONSTRUCTED A SYNTHETIC DATASET wWHOSE UNPDERLYING PARAMETERS AND CONNECTIVITY - WE ALSO APPLTED HTFATO A SFATITAL ATTENTION DATASET COLLECTED 8Y NAS AL-AIDROOS,
CORRELATIONS BETWEEN VOXEL TIME SERITES. PATTERNS WERE KNOWN, AND TESTED OUR ABILITY TO RECOYER THOSE PARAMETERS AND CONNECTIVITY ALEXA TOMPARY, AND NICHOLAS TURK-BROWNE.
PATTERNS USING HTFA.

- THE MASSIVE COMPUTATIONAL PEMANDS 7yPICALLY FORCE SCIENTISTS TO
FOCUS THEIR ANALYSES ON SEED REGIQONS OrR REGIONS OF INTEREST. S S — N F oy " s “ '.4
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A DARING CREW OF EXFPLORERS, VENTURING INTO THE DEEPEST REACHES OF THE UNCHARTED 5\- -

OCEAN, DISCOVERS A NEVER-BEFORE-SEEN TREASURE TROV E OF MuLTT-SUBIECT FMRI pDATAS- T-.

ETS. CAN OUR CREW SAFELY EXTRACT THE PRECIOUS BRAIN NETWORKS FROM THE WRECKAGE? . v‘ D X af \ 'l. ‘1 . ° ‘I | o> °%°e, o =m0z
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FIGURE 3. SLICES FROM A SYNTHETIC IMAGE. TR il
FIGURE 5. NODE WIDTH ESTIMA—

TION ERRORS ARE CORRELATED WITH + +
NODE CENTER ESTIMATION ERRORS.

— WE USED LOCALIZER DATA TO ITDPENTIFY NETWORKS OF NODES THAT ExXHIBITED FACE, SCENE, LEFT,
Zf OR RIGHT SELECTIVITY.

S

ARE THOSE LITTLE DOTS
ESTIMATION ERRORS
OR FOOD? ONLY ONE
way 7o FIND our?
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- WE ExamMINED BACKGROUND CONNECTIVITY BETWEEN THESE NETWORKS DURING DIFFERENT
EXPERIMENTAL CONPITIONS. WE FOUND THAT THE CONNECTIVITY PATTERNS WERE MODULATED WITH
PARTICIPANTS ATTENTIONAL STATES.
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= THE FULL CONNECTIVITY MATRIX IS HIGHALY REPUNDANT, SINCE FMRI IMAGES CONTAIN
STRONG SPATIAL CORRELATIONS. A . . . . .
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— WE CAN LEVERAGE THIS INTUITION 8Y APPROXIMATING THE FULL BRAIN NETWORK WITH A SIM- | g | ' N ;I GA‘T’T k; f/r 1 Ns b g iR Y RS :’4 i f‘; 5 /53; ﬁif SRMINERS CA
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— WE DEvELOPED HATERARCHICAL TOPOGRAFPHIC FACTOR ANALYSTS CAHTFA) 7O DETERMINE
THE OPTIMAL NODE LOCATIONS, SIZES, AND PER-IMAGE WEIGHIS. c. e I EsTIMATED CONNECTIV ITY
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FPCA 7O ME, BUT THE FAC- OK CLASS, CAN ANYONE TELL
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N FIGURE 8. FUNCTIONAL CONNECTIVITY 8Y EXPERIMENTAL

- WE USE CROSS VALIDATION TO OPTIMIZE THE NUMBER OF NODES. 2

%—0.4 3% CONDPITION.
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- WE EXTEND THE MODEL TO MULTI-SUBJIECT DATA BY MODELING EACH SUBJIECT-SPECTFIC MODPEL | L I U WGV S teseieli
AS A PERTURBATION OF A4 GLOBAL TEMPLATE. Tmact Tmaee LOCATION + LocarToN - THE RESULTS BEGIN TO RISE FROM THE DEPTHS, AND THEY ARE GLORIOUS TO BEHOLD. Nor onty

CHGELEE G (SECEEARNG SRR VAT 2 N (e F £ - ARE THE BRAIN NETWORKS FULLY FUNCTIONAL, 8ur THEY ARE EVEN MODULATED 8BY ATTEN-

— OUR ALGORITHMS EASILY SCALE TO ENORMOUS pATASETS wITH HUNDREDS OF THOUSANDS OF R T ITY AND FUNCTIONAL CONNECTIVITY. A. o [HE CREW WILLE BEYOND THETR WILDEST DREAMS!:

CONFUSION MATRIX. B. FUNCTIONAL CON-
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® - \\\ AF = E Ty > — THE COMPACT HTFA-DERIVED NETWORK REPRESENTATIONS ARE MUCH MORE EFFICIENT TO COM-
W N db 6 7 b PUTE WITH THAN VOXEL—BASED REPRESENTATIONS. THIS MAKES IT EASIER TO APPLY COMPLEX ALGO—
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FIGURE 2. A. SINGLE-SUBJIECT MODEL B. GLOBAL TEMPLATE. C. A SCALE. g ounr cove!

WORD OF THE CREW'S FANTASTZIC JOURNEY sPREADS ACROSS THE WORLD. WolLD-BE Ex-
PLORERS FLOCK TO WWW.PRINCETON.EDU/ " MANNING3 TO FREELY DOWNLOAD THE CREW'S SOL/RCE
CODE. WTILLYOU BE THE NEXT EXPLORER TO PLUMB THESE DEPTHSS?

IT SOON BECOMES CLEAR THAT THE VAST AMOUNT OF VALUABLE PDATA wrll BE FAR Too COMPU-
TATZIONALLY BURPENSOME 7O HAVE ANY HOPE OF BRINGING THIS PRICELESS FIND TO THE SUR-

FACE. UNDAUNTED, THE CREW BEGINS 7O PEVISE AN AFPFROXIMATZION...




